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ABSTRACT 

Leakage losses in unlined and lined trapezoidal channels are critical factors 

influencing water conservation and infrastructure efficiency. This study employs the 

Slide2 numerical model to estimate leakage losses and develop multiple-nonlinear-

regression (MNR) models for predictive analysis. A validation process was 

conducted by comparing the analytical solution with the Slide2 model, showing 

excellent agreement with a minimal deviation of 3%–6% across different canal 

geometries. The simulation results highlight the significant effects of channel bed 

width-to-water depth ratio (b*=b/y), liner-to-soil hydraulic conductivity ratio 

(k*=kL/k), liner thickness-to-water depth ratio (t*=tL/y), and side slope (z) on leakage 

losses. It was observed that increasing tL led to a reduction in leakage by as much as 

68%, while lowering kL substantially decreased losses, with almost complete 

elimination occurring when k* was less than or equal to 0.01. A set of MNR 

equations was developed for different side slopes, achieving R² values exceeding 

0.89, confirming high predictive performance. A generalized equation applicable to 

all side slopes was also formulated, achieving a determination coefficient (R²) of 

0.899 with a root-mean-squared-error (RMSE) of 1.448. The accuracy of the model 

was additionally confirmed through scatter plots, which showed that the predicted 

values closely aligned with the actual leakage losses. Finally, the findings confirmed 

the reliability of the Slide2 model for leakage loss estimation and underscore the 

importance of liner properties in water conservation. The developed regression 

models provided a practical tool for predicting leakage losses, aiding in the design 

and optimization of lined canals. 

HIGHLIGHTS 

 Slide2 model accurately predicts leakage losses in trapezoidal channels with minimal error. 

 MNR equations developed for varying side slopes achieve R² values above 0.89. 

 Liner properties significantly impact leakage losses; lower k* and higher t* reduce seepage. 

 Side slope variation has a minor effect on leakage losses compared to liner properties. 

 Generalized MNR model with R² of 0.899 and RMSE of 1.448 predicts leakage across all side slopes. 
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GRAPHICAL ABSTRACT 

 

ABBREVIATIONS  

ANN Artificial Neural Network MLPNN Multilayer Perceptron Neural Network 

ANOVA  Analysis of Variance  MNR Multiple Nonlinear Regression 

CC Cement Concrete RBFNN Radial Basis Function Neural Network 

FEM Finite Element Method  RR Random Rubble  

LDPE Low-Density Polyethylene VIF Variance Inflation Factor 

1. Introduction 

LEAKAGE is the main source of water loss in irrigation 

channels, occurring when water moves through the bed and 

sides of the channel [1]. This water infiltrates vertically and 

spreads laterally into the surrounding soil, leading to a 

reduction in the available water for irrigation [2]. As a result, 

the efficiency of water conveyance systems decreases [3]. Such 

leakage losses can disrupt the timely and equitable distribution 

of water, which is essential for fulfilling agricultural needs [4].  

Moreover, leakage may raise unconfined groundwater levels, 

causing water to rise through, waterlogging, capillary action, 

resulting in soil saturation and salt accumulation in the root 

zone, which negatively affects crop yields [5]. In areas with 

fallow land or natural vegetation, high groundwater levels can 

contribute to non-beneficial water consumption through 

evaporation and transpiration by weeds and phreatophytes [6]. 

Additionally, leakage impacts the subsurface return flow into 

channels, further diminishing the efficiency of water 

conveyance systems and highlighting the importance of 

effective leakage management in water resource planning [7]. 

Various techniques are utilized to mitigate leakage in irrigation 

channels, including channel lining, soil compaction, and 

sealing [8]. Although empirical equations and analytical 

models based on parameters such as channel discharge, flow 

velocity, and soil hydraulic properties are commonly 

employed, numerical modeling has gained prominence due to 

its efficiency and reduced dependence on extensive datasets 

[9]. Among these techniques, channel lining has been identified 

as particularly effective in minimizing water loss. Different 

types of liners, including compacted soil, soil-cement mixtures, 

asphaltic concrete, flexible membranes, and conventional 

concrete, serve as effective barriers against seepage [10]. In 

addition to reducing leakage, channel lining enhances hydraulic 

efficiency, lowers maintenance costs, suppresses weed 

proliferation, and prevents waterlogging in nearby agricultural 

areas [11], [12]. 

Extensive research has been conducted to evaluate the 

performance of various liners in reducing seepage losses, 

providing critical insights into their long-term efficiency and 

limitations [13], [14]. Advances in modeling techniques have 

significantly enhanced the ability to analyze leakage in 

irrigation channels. For example, hybrid modeling approaches 

have demonstrated superior accuracy in predicting seepage in 

irrigation systems [15]. Beyond computational modeling, both 

geometric and hydraulic characteristics significantly impact 

leakage rates. For instance, increased hydraulic conductivity, 

greater freeboard, steeper slopes, and higher channel walls have 

been observed to elevate leakage in triangular channels, 

highlighting the necessity of considering both liner selection 

and channel design [16]. Further investigations into 

trapezoidal, rectangular, and triangular channels using SEEP/W 
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software have identified the wetted perimeter as a critical factor 

affecting seepage rates, whereas the influence of side slopes 

has been found to be relatively minor [17]. These findings 

underscore the importance of integrating material properties 

and structural design considerations in the development of 

effective leakage management strategies. 

Finite element modeling has been widely applied to assess 

leakage losses in both lined and unlined trapezoidal channels. 

Hosseinzadeh Asl et al. [16] developed linear and nonlinear 

multivariate relationships to analyze leakage in trapezoidal, 

rectangular, and triangular channels. Their results reaffirmed 

that wetted perimeter was a key determinant of leakage, while 

side slopes had a lesser impact. Salmasi and Abraham [17] 

further investigated the role of hydraulic and geometric 

parameters using SEEP/W and empirical relationships, 

confirming that SEEP/W provided more precise leakage 

estimates, whereas empirical methods exhibited significant 

errors. Solomon and Ekolu [18] demonstrated that the 

effectiveness of a channel lining in reducing leakage is largely 

dependent on its permeability. Their findings revealed that 

leakage reduction was maximized when the ratio of concrete 

lining permeability to subsoil permeability ranged between 

6.9×10⁻⁵ and 5×10⁻⁵. While increasing the lining thickness had 

a relatively minor effect, it was recommended that thickness 

should not exceed 75 mm.  

Similarly,  Jamel [19] investigated leakage in both lined and 

unlined triangular channels using SEEP/W, concluding that 

seepage rates increased with higher hydraulic conductivity of 

both the soil and lining materials. Additionally, leakage was 

found to rise with an increase in freeboard, side slope 

steepness, and overall channel height, which is defined as the 

combined depth of water and freeboard. Tavakoli et al. [20] 

compared empirical equations with SEEP/W simulations in the 

Boldaji earth channel in Iran, concluding that the Moritz 

equation provided the closest and most accurate leakage 

estimates. However, SEEP/W was particularly effective for 

modeling trapezoidal cross-sections.  

Beyond leakage control, optimizing channel design is crucial 

for minimizing water losses while maintaining cost efficiency. 

Since channel construction costs include both direct expenses 

(such as excavation and lining materials) and indirect costs 

(such as leakage and evaporation losses), optimization 

techniques have been developed to determine the most cost-

effective channel dimensions while ensuring hydraulic 

stability. MATLAB-based optimization algorithms have been 

applied to achieve this balance, incorporating constraints such 

as minimum permissible velocity and Froude’s number to 

maintain stable flow conditions [21]. These studies emphasize 

the importance of integrating leakage reduction strategies into 

cost-effective channel design. Furthermore, accurate leakage 

estimation plays a key role in optimization, as traditional 

empirical equations often introduce errors. To address this 

limitation, another study used SEEP/W modeling to simulate 

leakage under various channel configurations and developed a 

soft computing model that correlates channel geometry and soil 

properties with leakage losses [22]. This approach proved to be 

more reliable than conventional empirical equations, offering a 

more effective framework for estimating leakage in cost-

optimization studies. 

Channel liners play a vital role in mitigating leakage losses in 

irrigation systems. Comparative studies examining channels 

lined with random rubble (RR) masonry and low-density 

polyethylene (LDPE) indicate that LDPE liners are 

significantly more effective, reducing leakage losses to 

approximately 2%, in contrast to 8% observed with RR liners  

[23]. These findings highlight the necessity of selecting 

appropriate lining materials based on specific leakage reduction 

objectives and operational requirements. Unlined channels also 

serve as critical benchmarks for evaluating the efficiency of 

lined systems. Notably, the SEEP/W model has demonstrated 

superior accuracy in predicting leakage losses compared to 

conventional empirical methods, which often yield 

considerable errors [16]. 

Research on compacted earth linings has demonstrated that 

highly compacted soils can reduce leakage discharge by as 

much as 99.8%, emphasizing the importance of thorough 

channel surface preparation  [24]. Furthermore, studies have 

established that the hydraulic conductivity of the lining 

material is the most influential factor affecting leakage rates, 

irrespective of variations in groundwater table depth or channel 

berm width. This underscores the need to select liners with 

optimal hydraulic properties to ensure effective and long-term 

leakage prevention  [5]. Additionally, an analysis of the El-Sont 

Channel in Egypt, utilizing Slide2 and FLOW-3D models, 

revealed that cement concrete (CC) and LDPE linings can 

achieve leakage reductions of up to 97%, while simultaneously 

increasing channel discharge by an average of 150% [25]. 

In recent years, predictive modeling techniques have become 

indispensable for simulating hydraulic and hydrological 

processes [25]–[29]. These models are particularly 

advantageous in handling complex and noisy datasets, making 

them highly suitable for leakage analysis, which can be 

challenging to model using conventional physical methods. For 

instance, comparative studies on leakage losses in unlined and 

lined channels have demonstrated that Gene Expression 

Programming (GEP) surpasses Artificial Neural Networks 

(ANN) in predictive accuracy, further reinforcing the value of 

advanced computational approaches in irrigation channel 

analysis [30]. Multilayer Perceptron Neural Network 

(MLPNN) has been identified as the most reliable model for 

predicting leakage loss, consistently performing well across 

different training-to-testing data splits [25]. Additionally, the 

Radial Basis Function Neural Network (RBFNN) has been 

recognized as the most accurate model for estimating leakage 

loss in lined trapezoidal channels [31]. 

Despite previous studies addressing the influence of side 

slopes, liner hydraulic conductivity, and thickness on leakage 

from lined trapezoidal channels, most have relied on field 
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observations or experimental models without developing 

generalized predictive tools. Moreover, no study has 

formulated MNR equations that explicitly account for varying 

side slopes to estimate leakage losses directly and accurately. 

Existing approaches often involve indirect methods and 

approximations, which may introduce significant errors. 

Therefore, the main objective of this study is to develop and 

validate accurate MNR models based on numerical 

simulations, enabling the direct prediction of leakage losses 

from lined trapezoidal channels under different geometric and 

hydraulic conditions. These models are intended to serve as a 

practical and reliable tool for hydraulic engineers and water 

resource managers to optimize canal design and enhance water 

conservation. 

2. Materials and Methods 

2.1.   Groundwater Leakage Modeling 

Slide2 software is a widely used limit equilibrium-based slope 

stability analysis developed by Rocscience [32]. It enables 2D 

numerical modeling of groundwater leakage within soil and 

rock slopes by incorporating leakage forces and pore water 

pressures into stability calculations [33]. The software 

integrates finite element groundwater flow modeling, allowing 

for a comprehensive assessment of groundwater movement and 

its impact on slope stability. The groundwater leakage module 

in Slide2 allows users to model various hydraulic boundary 

conditions, including infiltration, perched water tables, and 

transient leakage. Slide2 solves both steady-state and transient 

(unsteady-state) leakage problems using the finite element 

method (FEM).  

2.1.1. Governing equation 

The governing equation for groundwater leakage in Slide2 is 

derived from the conservation of mass (continuity equation) 

combined with Darcy's Law. Darcy’s Law describes the 

movement of water through a porous medium and is 

fundamental to leakage analysis [5]. Eq. (1) states that the 

specific discharge (q), also known as the leakage velocity, is 

proportional to the hydraulic gradient and is given as follows. 

𝑞 = −𝐾∆ℎ (1) 

where q is the specific discharge (m/s), K is the hydraulic 

conductivity (m/s), h is the hydraulic head (m), and ∆ℎ 

represents the hydraulic gradient, which is the change in head 

per unit distance. Darcy’s Law states that groundwater flow 

occurs in response to a hydraulic gradient, and the rate of flow 

is directly proportional to the permeability of the soil or rock 

medium. For steady-state groundwater flow conditions, the 

continuity equation (mass conservation) and Darcy’s Law 

combine to form Laplace’s Eq. (2). 

𝜕

𝜕𝑥
(𝐾𝑥

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦

𝜕ℎ

𝜕𝑦
) = 0 (2) 

where Kx and Ky are the hydraulic conductivities in the x- and 

y-directions (m/s), and h is the total hydraulic head (m). This 

equation governs the distribution of pore water pressures and 

hydraulic gradients within the soil or rock under steady-state 

flow conditions, where the groundwater flow remains constant 

over time. In this study, the Slide2 model is utilized to estimate 

the leakage discharge in lined channels per unit channel length 

in a 2D slope system [34]. 

2.1.2. Effective parameters 

The study incorporated various parameters, as illustrated in 

Figure 1. They are leakage loss per unit length of the channel 

(q) including liner characteristics (liner thickness, tL, and 

hydraulic conductivity, kL), channel geometry (water depth, y, 

bed width, b, and side slope, z), and the hydraulic conductivity 

of the surrounding soil (k). 

 
Figure 1. Sketch of a lined trapezoidal channel. 

Using dimensional analysis, Eq. (3) is derived to represent the 

functional relationship between the key parameters influencing 

leakage loss from lined trapezoidal channels: 

𝜙(𝑏, 𝑦, 𝑧, 𝑘, 𝑘𝐿 , 𝑡𝐿 , 𝑔, 𝑞) = 0 (3) 

The studied problem involves eight variables (n=8). While 

there are three fundamental dimensions (m=3), ρ, y, and k are 

selected as the repeated variables by applying Buckingham’s π-

theorem [35]. Thus, the total number of dimensionless 

parameters (π-terms) is determined to be five, as shown in Eq. 

(4). 

𝜙(𝜋1, 𝜋2, 𝜋3, 𝜋4, 𝜋5) = 0 

→ 𝜙 (
𝑏

𝑦
, 𝑧, ,

𝑘𝐿

𝑘
,
𝑡𝐿

𝑦
,

𝑞

𝑘𝑦
,
𝑔𝑦

𝑘2
) = 0 

(4) 

As indicated in previous similar studies [4], [24], [31], [36]–

[38], the parameters g, k, and y are considered constant. 

Consequently, the dimensionless term gy/k2 remains 

independent of the other variables and is excluded from further 

analysis, leading to the final form of the equation as presented 

in Eq. (5). 

𝑞

𝑘𝑦
= 𝜙 (

𝑏

𝑦
, 𝑧,

𝑘𝐿

𝑘
,
𝑡𝐿

𝑦
) 

→ 𝑞∗ = 𝜙(𝑏∗, 𝑧, 𝑘∗, 𝑡∗) 

(5) 

In Eq. (5), the dependent variable is the leakage loss ratio 

(q*), while the independent variables (𝑏∗, 𝑧, 𝑘∗, 𝑡∗).  

2.1.3. Model setup 

Following the approach outlined by Vedernikov [39], leakage 

flow was assumed to occur exclusively in the vertical 

downward direction, with no interaction between leakage and 

groundwater during the simulation process. To ensure precision 
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in capturing minor variations in fluxes within the simulation 

domain, mesh refinement was implemented during the 

discretization stage. The simulation domain was constructed 

using three thousand triangular three-noded finite elements, 

which provided an optimal balance between computational 

efficiency and accuracy. The setup process began by defining 

the material properties and dimensions of the unlined channel.  

Once these parameters were established, the liner’s hydraulic 

conductivity and thickness were specified within the model. 

The boundary conditions were then incorporated, with the total 

head boundary condition assigned to the channel perimeter and 

an exit leakage face condition applied at the bottom of the 

domain. Following this, a discharge section was designated at a 

specific location within the model to facilitate the estimation of 

leakage losses. Upon finalizing the model setup, the leakage 

analysis was conducted, and the leakage losses at the selected 

discharge section were extracted for further interpretation. The 

effective parameters influencing leakage losses, along with the 

simulation domain and applied boundary conditions, are 

illustrated in Figure 2. 

 
Figure 2. Meshing and boundary conditions utilized in the 

simulations. 

2.1.4. Model validation 

The Slide2 model was employed to simulate an unlined 

trapezoidal channel, commonly referred to as a losing-

disconnected channel, flowing through an unconfined, 

homogeneous, and isotropic porous medium of infinite depth 

[40]. An analytical approach using the inversion of conformal 

mapping techniques and hodograph, originally proposed by 

Vedernikov [39], provides a mathematical solution for leakage 

losses in such systems. This analytical method considers a 

trapezoidal channel within an unconfined porous medium and 

expresses leakage losses using the following Eq. (6): 

𝑞 = 𝑘(𝐵 + 𝐴𝑦)   (6) 

where q represents leakage losses per unit channel length (m³ 

d⁻¹ m⁻¹), k is the hydraulic conductivity of the soil (m d⁻¹), B is 

the top width of the channel (m), and A is a coefficient that 

depends on the values of B/y and z [41]. In this study, a 

homogeneous sandy soil with a k of 8.64 m d⁻¹ was considered. 

To validate the Slide2 model, simulations were performed 

using five different channel geometry ratios (b* = 1, 2, 3, 4, and 

5), where b, y, and z were set as 5m, 5m, and 1H:1V, 

respectively.  

 

2.1.5. Simulation scenarios 

Following the validation process, the influence of both channel 

geometry and lining on leakage losses is examined to formulate 

design charts and predictive equations for estimating leakage 

losses in lined and unlined trapezoidal channels. To achieve 

this, 600 simulation scenarios for lined channels were 

conducted using the Slide2 model. These scenarios involved 

variations in the geometry ratio (b), liner-to-soil hydraulic 

conductivity ratio (K), and liner thickness-to-water depth ratio 

(t), with values ranging across b = {1, 2, 3, 4, 5}, z ={1, 1.5, 

2}, K = {0.0005, 0.001, 0.005, 0.01, 0.05, 0.10, 0.30, 0.50}, 

and t = {0.01, 0.05, 0.10, 0.15, 0.20}. These parameter ranges 

were chosen to reflect real-world channel configurations and 

commonly encountered values for liner hydraulic conductivity 

and thickness. To maintain consistency across all simulations, 

the boundary conditions were defined in accordance with those 

applied during the calibration phase. 

2.2. Multiple Nonlinear Regression Modeling 

Multiple Nonlinear Regression (MNR) is a statistical approach 

used to model complex relationships between dependent and 

independent variables, particularly when the relationship is 

non-linear [42]. Unlike linear regression, which assumes a 

direct proportionality between variables, nonlinear regression 

accommodates curved, exponential, logarithmic, and 

polynomial relationships, making it a more suitable technique 

for capturing intricate patterns in data. In this study, MNR was 

conducted using IBM SPSS Statistics software [43], which 

provides a robust framework for estimating parameters in 

nonlinear models. SPSS employs iterative optimization 

techniques such as the Levenberg-Marquardt algorithm and 

quasi-Newton methods to refine parameter estimates and 

minimize residual errors. The nonlinear model adopted in this 

study was expressed as previously shown in Eq. (5). The 

objective was to formulate a regression equation that best 

represents the relationship between the given variables, 

ensuring accurate predictions of leakage losses. 

To implement MNR in SPSS, the dataset containing 

normalized independent variables and the dependent variable 

was first imported, with variables assigned appropriate names 

for easy identification. The nonlinear regression procedure was 

then selected through Analyze → Regression → Nonlinear, 

which opened the regression dialog box where dependent and 

independent variables were specified. The nonlinear model's 

functional form was then defined, selecting from power, 

exponential, logarithmic, or polynomial structures. In this 

study, a custom nonlinear equation incorporating b*, z, k*, and 

t* as explanatory variables was implemented. 

Once the model structure was established, initial parameter 

estimates were specified based on previous studies or empirical 

observations, with values such as b*=1, z=1, k*=0.1, and 

t*=0.15. SPSS utilized these initial estimates as a starting point 

to iteratively adjust and refine the parameters for optimal 

model performance. Following model definition, the nonlinear 
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regression process was executed, with SPSS iteratively 

optimizing the equation using the Levenberg-Marquardt 

algorithm, minimizing residual errors to achieve the best fit. 

The output from the MNR analysis included estimated model 

coefficients, goodness-of-fit statistics such as R² and RMSE. A 

high R² value coupled with low RMSE indicated a well-fitting 

nonlinear model, confirming its effectiveness in capturing the 

relationship between variables and ensuring reliable leakage 

predictions [37]. 

2.3. Multicollinearity and Hypothesis analyses 

Regression models rely on the assumption that predictor 

variables are independent of one another to ensure accurate 

coefficient estimation and reliable predictions [44]. However, 

when predictor variables exhibit high correlations, 

multicollinearity arises, leading to instability in the regression 

model and inflated standard errors of estimated coefficients. 

Additionally, assessing the statistical significance of 

independent variables is crucial to determine their contribution 

to the predictive model. To address these concerns, this study 

implemented multicollinearity diagnostics using the Variance 

Inflation Factor (VIF) and conducted hypothesis testing 

through Analysis of Variance (ANOVA) and the Z-test. 

Multicollinearity was assessed to ensure that predictor 

variables did not exhibit excessive correlation, which could 

distort the regression outcomes [45]. To mitigate this issue, 

min-max normalization was applied, transforming all input 

variables into a standardized range between 0 and 1, preventing 

variables with larger scales from disproportionately influencing 

the regression model [46]. The VIF was then used to quantify 

multicollinearity, with values below 2.5 indicating weak or 

negligible correlation and values above 10 suggesting severe 

multicollinearity, which could compromise model stability  

Beyond multicollinearity detection, hypothesis tests were 

conducted to evaluate the statistical significance of the input 

variables [47]. ANOVA was used to analyze the contribution 

of each independent variable to the total variance of the 

dependent variable. This method decomposed the total variance 

into explained and unexplained components, with the F-

statistic used to assess whether an independent variable had a 

significant effect on the dependent variable. A high F-statistic 

and a p-value below 0.05 indicated that the variable 

meaningfully influenced the regression model [48]. 

To further validate statistical significance, the Z-test was 

performed to compare the sample means of input variables 

against a hypothesized mean, typically set at zero. The Z-score 

was computed as the ratio of the difference between the sample 

and hypothesized mean to the standard error of the mean [49]. 

A p-value below 0.05 confirmed that an input variable 

significantly deviated from the hypothesized mean, reinforcing 

its importance in the analysis. Both one-tailed and two-tailed p-

values were computed to examine directional and non-

directional significance, offering deeper insights into the 

strength and consistency of the statistical findings [50]. 

3. Results and Discussion 

3.1. Validation process 

Table 1 presents a comparative analysis between the calculated 

values of q*obtained using Eq. (6) and the Slide2 model across 

different channel geometry ratios (b*). The results show a good 

agreement between the analytical equation and the numerical 

model, confirming the reliability of the Slide2 model in 

predicting leakage losses. For all b* values ranging from 1 to 5, 

the leakage losses estimated by the Slide2 model are slightly 

higher than those derived from the analytical equation. This 

discrepancy may be attributed to the finite element numerical 

approach in Slide2, which captures complex leakage patterns 

and hydraulic interactions more comprehensively than the 

simplified analytical model. The percent difference between the 

two methods is minimal, with Slide2 values exceeding the 

analytical estimates by approximately 3% to 6%, indicating 

good model validation. 

Additionally, the leakage loss ratio (q*) shows an increasing 

trend with higher b* values, reflecting the expected behavior 

where wider channels experience greater leakage due to the 

expanded wetted perimeter. The relative difference in q* 

between Eq. (6) and Slide2 remains consistent, reinforcing the 

numerical model’s robustness in simulating leakage losses 

accurately. Overall, the findings confirm that Slide2 effectively 

models leakage losses, making it a reliable tool for leakage 

estimation in unlined trapezoidal channels. The minimal 

deviation between the analytical and numerical results supports 

the validity of the simulation process, ensuring confidence in 

using the Slide2 model for further leakage analysis under 

varying channel conditions. 

Table 1. Comparison of calculated values of q* from Equation 

(6) and the Slide2 model. 

b* 1 2 3 4 5 

q*
Eq. (6) 5.50 6.80 8.00 9.15 10.30 

q*
Slide2 5.68 7.04 8.37 9.63 10.92 

3.2. Simulation Results 

To assess how lining affects the leakage losses ratio (q*), two 

main parameters were examined: the liner hydraulic 

conductivity ratio (k*) and the ratio of liner thickness to water 

depth (t*), which were set at 0.1 and 0.2, respectively. The 

choice of k* = 0.1 was made as it represents a moderate value 

within the studied range, ensuring it is neither excessively high 

nor too low. When k* values approach 1, the impact of the liner 

in reducing leakage diminishes, whereas for very low k* values 

(≤ 0.01), leakage losses become nearly negligible. Similarly, 

the decision to use t* = 0.2 was based on the understanding that 

thicker liners are more effective at preventing leakage 

compared to thinner ones (t* < 0.2), as they offer a more 

substantial barrier against water infiltration. 

Figure 3 presents the relationship between q* and different k* 

and b* values while maintaining t* at 0.2 and z at 1. When t* 

was held constant at 0.2, the average reduction in leakage 
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losses was observed as follows: 8.9%, 20.4%, 67.9%, 82.6%, 

96.2%, 97.4%, 99.4%, and 99.7% for k* values of 0.50, 0.30, 

0.10, 0.05, 0.01, 0.005, 0.001, and 0.0005, respectively. 

Additionally, Figure 4 demonstrates a significant decline in 

leakage losses as t* increases. When k* was fixed at 0.1 with z = 

1, the average percentage reduction in leakage losses was 

recorded as 10%, 23%, 41%, 61%, and 68% for t* values of 

0.02, 0.05, 0.10, 0.15, and 0.20, respectively. 

 
Figure 3. Estimated q* ratios versus the k* and b* ratios (t* = 

0.20 and z = 1). 

 
Figure 4. Estimated q* ratios versus the t* and b* ratios (k* = 0.1 

and z = 1). 

The impact of side slope values on leakage reduction is 

depicted in Figure 5, which illustrates the average leakage 

reduction for various k* values across different z values. The 

results show that changes in z have a relatively minor effect on 

the leakage losses ratio (q*), as confirmed by the trends 

observed in Figure 5. With t* set at 0.2, raising the z value by 

0.5 resulted in mean leakage loss reductions of 12.1%, 23.3%, 

67.8%, 84.5%, 96.1%, 97.3%, 99.3%, and 99.7% for k* values 

of 0.5, 0.3, 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005, 

respectively. Similarly, Figure 6 highlights the variation in 

average leakage reduction across different side slopes for each 

t* value. When k* was fixed at 0.10, increasing z by 0.5 led to a 

decrease in leakage losses of 9.93%, 22.6%, 41.4%, 61.1%, and 

67.8% for t* values of 0.02, 0.05, 0.10, 0.15, and 0.20, 

respectively. The results reveal a direct correlation between 

liner hydraulic conductivity and leakage losses, indicating that 

liners with higher hydraulic conductivity allow greater water 

seepage, leading to increased leakage. Conversely, liners with 

lower hydraulic conductivity effectively limit water loss. 

Furthermore, the study found an inverse relationship between 

liner thickness and leakage losses for all tested b* values, 

showing that increasing t* by 0.05 consistently resulted in 

roughly a 15% reduction in leakage losses, regardless of the z 

value. Another key finding was the influence of side slopes, 

where flatter slopes contributed to higher leakage losses 

compared to steeper ones. This can be attributed to the fact that 

flatter slopes have a larger wetted perimeter, increasing the 

surface area available for water leakage. In summary, the 

findings consistently demonstrate that regardless of the b* ratio, 

leakage losses decline as k* decreases and t* increases, across 

all observed side slope values. 

 
Figure 5. Average % reduction in q* ratios versus k* and z ratios 

(t* = 0.2). 

 
Figure 6. Average % reduction in q* ratios versus t* and z ratios 

(k* = 0.1). 

3.3. Developed MNR equations 

3.1.1. Statistical Evaluation 

The evaluation of multicollinearity, as presented in Table 2, 

suggests that while most input variables show high statistical 

significance, the assumption of the absence of multicollinearity 

is not entirely supported by the data. The VIF for the intercept 

is 6.646, which indicates some level of multicollinearity within 

the model. This suggests redundancy among predictor 

variables, which may affect the model’s stability and 

interpretation. However, for the variables b*, z, k*, and t*, the 

VIF values are all 1, implying that these individual variables do 

not exhibit multicollinearity. Therefore, while the overall 

model shows some potential issues with multicollinearity, the 

predictor variables themselves exhibit minimal redundancy. 

The results from the ANOVA analysis (Table 2) further 

confirm that b*, k*, and t* have a significant effect on the 

model’s output. This is evidenced by their high F-statistics and 
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low p-values, which reflect the high correlation between 

variations in these geometric and hydraulic parameters and 

changes in the dependent variable. These parameters are 

critical in explaining the variability of the model’s outcome. 

On the other hand, the variable z does not demonstrate 

statistical significance, as its p-value (0.0765) exceeds the 

conventional 0.05 threshold, indicating that its effect on the 

model is comparatively weak. Further validation of the input 

variables' importance is provided by the Z-test results in Table 

2. The z-scores for b*, k*, and t* are notably large, which 

indicates that the observed means for these variables differ 

significantly from the hypothesized mean of zero. These results 

are corroborated by the corresponding p-values, which indicate 

that the z-scores surpass the critical thresholds for both one-

tailed (1.64) and two-tailed (1.96) tests, reinforcing the 

statistical significance of these variables. While the ANOVA 

test did not identify z as a significant contributor, its Z-test 

result suggests that its mean remains stable across the sample 

dataset, hinting at potential relevance in specific modeling 

contexts. 

Table 2. Multicollinearity and hypothesis analyses. 

Multicollinearity 

Input Variables Intercept b* z k*  t* 

Coefficients 0.879 2.312 0.670 8.894 -2.168 

Standard Error 0.200 0.219 0.190 0.225 0.214 

T-stat 4.400 10.547 3.529 39.451 -10.149 

p-value 0.000 0.000 0.000 0.000 0.000 

Lower 95% 0.488 1.882 0.298 8.452 -2.587 

Upper 95% 1.271 2.741 1.042 9.336 -1.749 

R² 0.750 0.750 0.750 0.750 0.750 

VIF 6.646 1.000 1.000 1.000 1.000 

ANOVA test 

Variation source 

ANOVA for b* ANOVA for z ANOVA for k* ANOVA for t* 
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SS 401 8170 8570 44.9 8520 8570 5610 2960 8570 371 8200 8570 

df 1 598 599 1 598 599 1 598 599 1 598 599 

MS 401 13.7 - 44.9 14.3 - 5610 4.95 - 371 13.7 - 

F-statistic 29.344 - - 3.148 - - 1132.68 - - 27.073 - - 

p-value 8.79E-08 - - 0.0765 - - 1.11E-16 - - 2.70E-07 - - 

F crit 3.8571 - - 3.8571 - - 3.8571 - - 3.8571 - - 

Z-test 

Statistical Parameter Mean Known Variance Observations z-Score 

b* 3.000 2.003 600 51.92 

z 1.500 0.167 600 89.92 

k* 0.121 0.030 600 17.22 

t* 0.104 0.004 600 38.98 

     

3.1.2. Individual equations for different channel side slopes 

The MNR models developed in this study were assessed at 

different side slope values (z) to determine their predictive 

accuracy in estimating leakage losses. The statistical validation 

of these models was performed using ANOVA, providing 

insights into their explanatory power and overall reliability. For 

z=1, Eq. (7) was obtained from the MNR model. The ANOVA 

results indicated a total sum of squares (SSTotal) of 4370.522, 

with the regression model accounting for 4122.008 and a 

residual sum of squares of 248.515. This resulted in an R-

squared value of 0.895, meaning that 89.5% of the variation in 

q* was explained by the model. RMSE was found to be 1.114, 

confirming the model's ability to capture the relationship 

between variables with minimal error. The scatter plot in 

Figure 7a illustrates the relationship between the actual and 

predicted values of q*, where most data points are closely 

aligned with the equality line and within the ±25% deviation 

boundaries. This alignment confirms that the model provides 

an accurate estimation of leakage losses for this specific case. 

For z=1.5, Eq. (8) was obtained from the MNR model. The 

ANOVA results revealed that SSTotal was 5268.071, with the 

regression model accounting for 4994.677 and a residual sum 

of squares of 273.394. The R-squared value increased to 0.903, 

indicating that 90.3% of the variability in q* was captured by 

the model. The RMSE value of 1.169 was slightly higher than 

that obtained for z=1, but the overall accuracy of the model 

remained high. Figure 7b presents the scatter plot for this 

model, showing that data points remained well-distributed 
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around the equality line. The majority of values were confined 

within the ±25% deviation range, confirming that the model 

successfully captures the variability in leakage losses for this 

particular slope condition. 

 

Figure 7. Scatter plots of actual vs. predicted q* for different 

side slopes (z): (a) z=1, (b) z=1.5, and (c) z=2. The black 

dashed line represents equality, while red and green indicate 

±25% deviation. 

For z=2, Eq. (9) was obtained from the MNR model. The 

ANOVA results indicated that SSTotal was 6282.117, with the 

regression model explaining 5946.530 and the residual sum of 

squares amounting to 335.587. The R-squared value remained 

high at 0.900, confirming that 90.0% of the variation in q* was 

accounted for by the model. The RMSE was found to be 1.295, 

slightly increasing the residual error compared to the previous 

cases. Despite this, the scatter plot in Figure 7c confirmed that 

the model remained highly reliable, with most predicted values 

closely following the equality line and falling within the ±25% 

deviation range. This result suggests that as the slope value 

increases, the model remains robust, with only slight variations 

in prediction accuracy.  

The overall analysis confirms that all three models show high 

statistical significance, as reflected in their high R-squared 

values and relatively low residual errors. The scatter plots 

further reinforce the validity of these models by illustrating that 

the predicted values align closely with the actual values, 

demonstrating minimal deviations. The consistent performance 

across different side slope values suggests that the MNR 

approach effectively captures leakage loss behavior under 

varying conditions. The equations governing these models are 

compiled as follows: 

𝑞∗ = 𝑏∗0.476 × 𝑘∗0.420 × 𝑡∗−0.164 × 4.535   𝑓𝑜𝑟 𝑧 = 1          (7) 

𝑞∗ = 𝑏∗0.415 × 𝑘∗0.424 × 𝑡∗−0.162 × 5.422   𝑓𝑜𝑟 𝑧 = 1.5       (8) 

𝑞∗ = 𝑏∗0.395 × 𝑘∗0.421 × 𝑡∗−0.171 × 5.880   𝑓𝑜𝑟 𝑧 = 2          (9) 

3.1.3. Generalized MNR equation for all channel side 

slopes 

The generalized MNR equation (Eq. 10) for all side slope 

values (z) is expressed as: 

𝑞∗ = 𝑏∗0.423 × 𝑧0.265 × 𝑘∗0.422 × 𝑡∗−0.166 × 4.791              (10) 

where b*, z, k*, and t* represent the independent variables 

influencing the predicted leakage loss, and the estimated 

coefficients define the extent of their impact. The statistical 

analysis of this generalized model was performed using 

ANOVA, which confirmed its high predictive capability. The 

SSTotal was calculated as 15,920.71, with the regression model 

explaining 15,059.18 of this variance, leaving only 861.53 as 

the residual sum of squares. This resulted in an R-squared 

value of 0.899, indicating that 89.9% of the variability in 𝑞∗ is 

accounted for by the model. The RMSE was found to be 1.448, 

reflecting the model’s accuracy in capturing the relationships 

between variables with a minimal level of error. 

The parameter estimates provide insights into the influence of 

each independent variable on the predicted outcome. The 

coefficient 0.423 associated with b* suggests that an increase in 

this variable leads to a significant positive effect on q*. 

Similarly, the coefficient 0.265 for z indicates a positive 

correlation, though its impact is less pronounced than that of b*. 

The coefficient 0.422 for k* further reinforces its high 

contribution to predicting leakage losses. However, the 

coefficient -0.166 for t* signifies a negative relationship, 

implying that higher values of t* lead to a slight reduction in q*. 

The constant 4.791 ensures that the model is well-calibrated 

and maintains appropriate scaling across different scenarios. 

The scatter plot in Figure 8 illustrates the comparison between 

actual and predicted values of q* using the generalized 

regression model. The alignment of data points along the 

equality line suggests a high correlation between the predicted 

and actual leakage loss values. The presence of most data 

points within the ±25% deviation range confirms that the 

model maintains high predictive accuracy across varying side 

slope values. The R-squared value of 0.899, as shown in the 

figure, highlights the model's robustness and reliability, 

ensuring that it can be effectively applied to different slope 
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conditions without significant loss of precision. The inclusion 

of deviation boundaries in the plot further reinforces the 

accuracy of the model, as the majority of predicted values 

remain within acceptable margins of deviation. 

Overall, the analysis confirms that the generalized MNR model 

effectively captures the relationship between leakage losses and 

the governing parameters across different values of z. The high 

R-squared value, combined with the minimal residual error, 

supports the validity of the model. The scatter plot further 

verifies that the model consistently aligns with observed data, 

reinforcing its suitability for predicting leakage losses under 

various side slope conditions. 

 
Figure 8. Scatter plot of actual vs. predicted q* using the 

generalized MNR model for all side slopes (z). The black 

dashed line represents the equality line, while the red and green 

dashed lines indicate ±25% deviation. 

4. Conclusions 

This study analyzed seepage losses in trapezoidal canals using 

the Slide2 numerical model and developed MNR equations to 

enhance predictive accuracy. The validation of the Slide2 

model against an analytical solution demonstrated its 

reliability, with deviations ranging from 3% to 6%. The 

simulation results emphasized the significant influence of liner 

properties on seepage losses, highlighting that lower hydraulic 

conductivity ratio (k*) effectively minimizes leakage, while 

increasing liner thickness (t*) further enhances seepage 

reduction. Additionally, the effect of side slope (z) was 

examined, confirming that steeper slopes lead to reduced 

seepage losses due to a smaller wetted perimeter. Summing up 

the conclusions, the following key findings can be drawn: 

- The Slide2 model successfully simulated seepage losses, 

showing high agreement with analytical solutions, 

validating its effectiveness for seepage analysis. 

- Lowering the liner hydraulic conductivity and increasing 

liner thickness significantly reduce seepage losses, 

demonstrating the importance of optimized liner design in 

canal systems. 

- The influence of side slopes was evident, with steeper 

slopes leading to lower seepage losses by reducing the 

wetted perimeter and, consequently, the seepage pathway. 

- Individual MNR equations were developed for different 

side slopes (z), achieving high predictive accuracy with R² 

values exceeding 0.89. The generalized equation, 

applicable to all side slopes, exhibited an R² of 0.899 and 

an RMSE of 1.448, demonstrating robust model 

performance. 

- The scatter plots confirmed the high correlation between 

predicted and actual seepage losses, with the majority of 

data points falling within ±25% deviation, validating the 

reliability of the developed MNR models. 
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